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ABSTRACT: Growing economy causes the shortage of mineral resource in the near future. The 
mineral resource locates at the sea bottom floor is an alternative solution. The hydraulic lifting 
technique is the priority option for the deep-sea mining. However, the heave motion caused by ocean 
wave leads to longitudinal vibration of the lifting pipe, which is also influenced by fluid structural 
interaction effect between the internal fluid and the pipe wall. During the longitudinal vibration, the 
closed end due to blockage or malfunction of the buffer will either pull or push the internal fluid that 
activates the pressure wave oscillation. The partitioned shell-based water hammer model is advanced 
to replicate the longitudinal vibration of the fluid-filled lifting pipe with one end closed. For 
parametric study, the frequency of the heave motion varies in the frequency range of the natural 
ocean wave. The masses of the lifting pump and buffer are treated as concentrated masses. Effects 
of concentrated masses, length of lifting pipe on the pipe dynamic response are investigated. Three 
resonant frequencies in the investigated range for the full scale of ocean mining lifting system are 
found. The first and the third resonance frequencies are identical to the frequencies of the water 
hammer pressure wave and the stress wave oscillation, respectively. The second resonant results 
from the coupling between the water hammer pressure wave and the stress wave. It also found that 
there is always an excited frequency a bit over the resonance frequency which depresses dynamic 
response of the fluid-filled lifting pipe. 

KEY WORDS: Deep-sea mining, heave motion, longitudinal vibration, partitioned water hammer 
model, resonance.  

1. INTRODUCTION  
The deep-minerals attracts more attention in recently, as it is an alternative option to solve 
the mineral shortages alongside with the rising of world population and economic 
(Heffernan, 2019). On the sea floor over a depth of 4000m, the well-known Clarion-
Clipperton Zone (CCZ) reserves trillions of potato-sized polymetallic nodules and holds 
more of certain metals than land deposits. These metals could satisfy the growing demand 
for the green technology to achieve a sustainable development goal, such as batteries to 
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store wind, solar and ocean wave energy and power electric cars. In fact, the deep-sea 
mining technology to extract the polymetallic nodules from the deep-sea has a long history, 
more than 50 years (Sparenberg, 2019). Mechanical lifting and hydraulic lifting have been 
investigated for the transportation of the polymetallic from the sea floor to sea surface 
(Verichev et al., 2011). Since the hydraulic lifting can provide continuous productions, it 
is more efficient than the mechanical lifting.  

The hydraulic lifting system for deep sea mining is depicted in Figure 1, which consists 
of seabed mining vehicles, flexible riser, buffer, lifting pump and rising pipe, as well as 
mining vessel and shipping vehicle on the sea surface. The waster water along with the 
nodules of hydraulic transportation is discharged back under the sea surface with a depth 
of 1000m to decease the environment impact (Heffernan, 2019). Under the harsh ocean 
environment, the lifting system consisting of a buffer, lifting pump and pipe is vulnerable 
which can be simplified as a fluid-filled hanging pipe with concentrated masses.  

 

 
Figure 1 Deepsea mining system 

 
The internal fluid is a key factor for the stability of the lifting pipe system. Based on 

theoretical analysis, Paidoussis (1970) found that both the hanging pipe and standing pipe 
lose stability by flutter after a critical high flow velocity. In the case of a hanging pipe 
aspirating fluid, the fluid flows from the free end to the fixed end that consistent with the 
flow direction in the lifting system for ocean mining. Paidoussis and Luu (1985) found that 
aspirating pipe loses stability at extremely low speed, which is contradicted to the 
experimental observation. Paidoussis (1999) attributed this contradiction to the absence of 
negative pressurisation in the theoretical equations. Based on theoretical analysis, Kuiper 
and Metrikine (2005) attributed this contradiction to the hydrodynamic drag caused by 
surrounding water. In further work, Kuiper and Metrikine (2008) experimentally observed 
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the cantilever aspiring pipe lose stability beyond a critical velocity of the inner flow.  
Using experimental, numerical and analytical methods to investigate cantilevered 
aspirating pipes, Giacobbi et.al., (2012) observed first-mode flutter as the inner flow 
beyond the critical velocity. Unlike a cantilever pipe with a fixed end, Chatjigeorgiou 
(2010) accounted for the top excitations in aspiring pipe with plug flow and found that the 
effect of the axial force due to inner steady flow is negligible for the lifting pipe dynamic 
response. Considering the density variation in the inner flow, Bai et.al., (2018) improved 
the stability criterion of the lifting pipe stability for ocean mining. Aforementioned 
published works on the inner flow are focus on the steady flow. Few literatures investigate 
the dynamic response due to unsteady flow (water hammer) caused by blockage or 
malfunction of pump and valve in ocean mining.  

There are a lot of work on water hammer, accounting for the fluid-structural interaction 
effect in fluid-filled pipe. Skalak (1953) predicted a precursor pressure wave travelling 
with the speed close to the sound speed in the pipe wall, which was experimentally 
observed by Williams (1977). Based on experimental observations, Budny et.al., (1990, 
1991) investigated the effects of structural damping on the dynamic response of fluid and 
structural fields during water hammer. Tijsseling and Lavooij (1990) classified the fluid-
structural interaction effects into friction, Poisson and junction coupling. Water hammer 
accounting for the fluid-structural interaction effects were experimentally investigated in 
the L-shape (Tijsseling & Vaugrante, 2001) and T-shape pipes (Vardy et al., 1996). 
Various numerical methods have been adopted to solve the water hammer accounting for 
the fluid structural interaction effects, e.g., the method of characteristics (Wiggert & 
Sundquist, 1997; Wiggert & Tijsseling, 2001), the Godunov’s method (Daude & Galon, 
2018; Gale & Tiselj, 2008). To remedy the limitations of the monolithic water hammer 
models, Cao et.al. (2021) proposed a partitioned water hammer model accounting for the 
fluid structural interaction, which adopted an axisymmetric finite element based on thin-
shell theory (Cao et al., 2020). The boundary conditions investigated in the published 
works are either fixed or longitudinal free. However, the top boundary of the lifting pipe 
is forced to oscillate that needs further investigation for the water hammer phenomenon 
accounting for fluid-structural interaction. 

According to the above brief review, the published works interested on the longitudinal 
vibration due to heave motion do not account for the internal unsteady flow, and those 
works interested on the unsteady flow do not account for the forced boundary condition. 
Hence, the present work focus on the water hammer in a lifting pipe, accounting for the 
forced boundary due to the heave motion of the surface vessel. Accounting for the 
concentrated masses of pump and buffer in the finite element model, the dynamic response 
is obtained for lifting pipe subjected to heave motion. Using the partitioned algorithm, the 
finite element is adopted in conjunction with a fluid model for a fluid-filled lifting pipe 
with one end closed. The proposed partitioned water hammer model is solved to obtain the 
dynamic response of fluid-filled rising pipe with one end closed. Effects of the pipe length 
and masses of the pump and buffer, as well as the frequency of heave motion on the 
dynamic response of the rising pipe, are investigated both in an empty and fluid-filled pipe. 
The manuscript also investigates the effects of the initial internal flow velocity on the 
dynamic response of fluid-filled lifting pipe. 
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2. STATEMENT OF THE PROBLEM
Neglecting effects of surrounding water and the influence of flexible riser, the 

schematic of hydraulic lifting system in ocean mining system (Figure 1) is depicted in 
Figure 2. The heave motion of the mining vessel is simplified as a forced sinusoidal heave 
motion applied at the top of the lifting pipe. The origin 𝑂𝑂 of cylindrical coordinate (𝑧𝑧𝑧 𝑧𝑧𝑧 
locates at the centre of the pipe cross-section at sea surface. The axis 𝑧𝑧 is oriented along 
the pipe axis and the axis 𝑟𝑟 is oriented along the radial direction. The lifting pipe has a 
length of 𝐿𝐿 with a length of 𝐿𝐿� for section OP and a length of 𝐿𝐿� for section PB, i.e., 
𝐿𝐿 𝐿 𝐿𝐿� + 𝐿𝐿�. The steel lifting pipe has a uniform circular cross-section with mid-surface 
radius 𝑅𝑅 and thickness ℎ. The steel has Young’s modulus , the Poisson’s ratio  
and a density of 𝜌𝜌�. The internal water has a density of 𝜌𝜌� and bulk modulus of 𝐾𝐾�. The 
buffer with mass 𝑀𝑀� locates at the bottom of the lifting pipe and a pump with mass 𝑀𝑀� 
locates at the intermediate of the lifting pipe. The initial velocity of in viscid inner flow is 
𝑉𝑉�, negative value for fluid flow from sea floor to sea surface. Due to the heave motion of 
the mining vessel, the top of the pipe is forced to oscillate sinusoidally with a displacement 
𝑢𝑢��� = 𝐴𝐴�sin (𝑤𝑤�𝑡𝑡𝑡, in which 𝐴𝐴� is the amplitude and 𝑤𝑤� is the frequency of the excited 
sinusoidal wave. Due to the blockage or malfunction at the bottom of the lifting pipe, water 
hammer wave oscillates in the pipe and couples to the forced oscillation of the lifting pipe. 
It’s required to investigate the influence of the vertical oscillation of the pipe top on the 
wave hammer phenomenon.  

Figure 2  Schematic of the hydraulic lifting pipe system subjected to sinusoidal heave motion 
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3.  PARTITIONED SHELL-BASED WATER HAMMER MODEL 
Based on the assumption for the pipe dynamic response, mostly water hammer models 

can be classified into the classical water hammer models, which neglects the coupling 
effects between the pipe dynamic response and the transient flow (Ghidaoui et al., 2005), 
and the extended water hammer models (Tijsseling, 1996; Tijsseling et al., 2008), which 
accounting for the coupling effects between the transient flow and the longitudinal 
dynamic response of the pipe. The classical and extended water hammer models are 
commonly solved using the monolithic scheme, in which, both the fluid and the structural 
governing equations are solved simultaneously in each time step (Lavooij & Tijsseling, 
1991; Tijsseling & Lavooij, 1990). In contrast, the partitioned water hammer models are 
enhanced in the modularity and robust in handling complex scenarios as illustrated in Cao 
et.al., (2021). Hence, the partitioned shell-based water hammer model from Cao et.al., 
(2021) is adopted and advanced in present work to handle the forced oscillation boundary 
at the top of the lifting pipe. For self-contained and avoid repetition, the partitioned shell-
based water hammer model is simply summarized in this section.  

In the partitioned water hammer models, the one-dimensional mass and momentum 
conservation equations for the inviscid fluid have been developed to capture the transient 
sectional pressure 𝑃𝑃(𝑥𝑥, 𝑡𝑡) and velocity 𝑉𝑉(𝑥𝑥, 𝑡𝑡) field in the fluid domain, given as  

  (1) 

       (2) 

where 𝑤𝑤 = 𝑤𝑤(𝑧𝑧, 𝑡𝑡)  is the radial displacement of inner surface of pipe, 𝑔𝑔  is the 
gravity acceleration, 𝑡𝑡  denotes time, 𝛼𝛼  is the angle between pipe and horizontal 
direction, e.g., 𝛼𝛼 = 0 for a horizontal pipe and 𝛼𝛼 = 90° for a vertical pipe. Using the 
method of characteristics, Equations (1) and (2) are transferred into two ordinary 
differential equations along the positive and negative characteristic lines. The incline of 
the characteristic lines in the fluid model is equivalent to the sound speed in the fluid, i.e., 
𝑎𝑎� = �𝐾𝐾�/𝜌𝜌�. The actual water hammer wave speed 𝑎𝑎� is lower than the sound speed 
𝑎𝑎� due to fluid-pipe interaction effects.  

The values of the radial displacement 𝑤𝑤(𝑧𝑧, 𝑡𝑡) are obtained from the axisymmetric 
shell-based structural model, given as 

  (3) 

where 𝑀𝑀  is the mass matrix, 𝐾𝐾  is the stiffness matrix and 𝐶𝐶  is the Rayleigh 
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pipe wall 𝑤𝑤�

� due to the curvature of the radial displacement, subscript 𝑖𝑖 denotes the first 
node and the second node of the axisymmetric shell-based element, and 𝐹𝐹(𝑡𝑡) is the 
energy equivalent load vector resulting from the water hammer pressure 𝑃𝑃(𝑧𝑧, 𝑡𝑡) loaded 
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predominant modes are chosen to determine the Rayleigh damping matrix. The constant-
average-acceleration method is adopted for the time integration. Unlike the structural 
model adopted in the classical and extended water hammer model, the shell-based 
structural model accounts for the radial inertial effects, as well as the gradient and curvature 
of the radial displacement around the wave front and boundaries. The model also offers 
flexibility in modeling various types of radial, longitudinal and rotational boundary 
conditions. This is the main reason to adopt the shell-based partitioned water hammer 
model for the water hammer problem in rising pipe for ocean mining impacted by the heave 
motion.  

Using the partitioned scheme, the fluid model and the structural model are solved 
sequentially and iterated until specified convergence obtained in each time step.  

4. REFERENCE CASE 
A rising pipe is considered without the effects of surrounded water and the flexible 

riser. The inner water is considered as in viscid fluid. The length of section OP is 𝐿𝐿� =
200𝑚𝑚 and 𝐿𝐿� = 800𝑚𝑚 for section PB. The mid-surface of pipe is 𝑅𝑅 = 0.2𝑚𝑚 with a 
thickness of ℎ = 15𝑚𝑚𝑚𝑚 . Pipe material density is 𝜌𝜌� = 7800𝑘𝑘𝑘𝑘/𝑚𝑚�  with the Young 
modulus of 𝐸𝐸 = 210𝐺𝐺𝐺𝐺𝐺𝐺  and a Poisson’s ratio of 𝑣𝑣 = 0.25. The internal flow has a 
density of 𝜌𝜌� = 1000𝑘𝑘𝑘𝑘/𝑚𝑚� with a bulk modulus of 𝐾𝐾� = 2.1𝐺𝐺𝐺𝐺𝐺𝐺. The lifting pump 
has a mass of 𝑀𝑀� = 7500𝑘𝑘𝑘𝑘 and the buffer has a mass of 𝑀𝑀� = 3000𝑘𝑘𝑘𝑘. The initial 
velocity of the internal flow is 𝑉𝑉(𝑧𝑧, 0) = 0. Since the present work is only interested in 
the dynamic response of the lifting pipe, the gravity force and the static hydraulic pressure 
along the longitudinal axis due to gravity are ignored.  

The boundary condition at the top is 𝐻𝐻��� = 0 for the fluid model and 𝑤𝑤(𝑧𝑧 = 0) =
𝑤𝑤�(𝑧𝑧 = 0) = 0 for the structural model. The excited heave motion at the top of the lifting 
pipe is 𝑢𝑢� = 𝐴𝐴�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑡𝑡, in which 𝐴𝐴� = 1 is adopted for all cases, the excited frequency 
is investigated in the range of 𝑤𝑤�~(0.2𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠]  that close to the frequency of ocean wave. 
At the pump and buffer, the boundary conditions are 𝑤𝑤(𝑧𝑧 = 𝐿𝐿�) = 𝑤𝑤�(𝑧𝑧 = 𝐿𝐿�) = 0 and 
𝑤𝑤(𝑧𝑧 = 0) = 𝑤𝑤�(𝑧𝑧 = 𝐿𝐿) = 0 for the structural model. Without column separation at the 
bottom of the lifting pipe, the fluid velocity is identical to the longitudinal velocity of the 
closed end, i.e., 𝑉𝑉(𝑧𝑧 = 𝐿𝐿) = 𝑢̇𝑢(𝑧𝑧 = 𝐿𝐿) where the dot denotes derivative with respect to 
time. Based on the natural frequency analysis, the first radial predominant frequency is 
𝑤𝑤� = 1.57𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 and the first longitudinal predominant frequency is 𝜔𝜔� = 24082.6𝑟𝑟𝑟𝑟𝑟𝑟/
𝑠𝑠. The damping ratio for the chosen modes to determine the Rayleigh damping matrix are 
set as 𝜉𝜉� = 𝜉𝜉� = 5%. In order to obtain steady state response, a long simulation time 𝑇𝑇 =
1000𝑠𝑠 is simulated. Based on mesh sensitive analysis, the element length is fixed as ∆𝐿𝐿 =
1𝑚𝑚 Considering the efficiency and accuracy, the Courant number adopt an integer value 
𝐶𝐶� = 10 to determine time step as △ 𝑡𝑡 = 𝐶𝐶𝐶𝐶 △ �
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5.1 DYNAMIC RESPONSE OF FLUID-FILLED LIFTING PIPE SUBJECTED TO 
HEAVE MOTION 

The present partitioned shell-based water hammer model is used to simulate the water 
hammer phenomenon in the reference case. For the iterative process between the structural 
model and the fluid model in each time step, the matched interface is adopted for the data 
transfer and the Aitken technique is adopted to accelerate the iterative process. Using the 
structural model for the empty lifting pipe, the displacement, velocity and acceleration field 
at 1000s are adopted as the initial conditions for the fluid-filled lifting pipe system.  

The histories of the displacement of the buffer are plotted in Figure 10(a) with excited 
frequency 𝜔𝜔� = 1.08𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 and in Figure 10(b) with excited frequency 𝜔𝜔� = 1.22𝑟𝑟𝑟𝑟𝑟𝑟/
𝑠𝑠 . Figure 10 (a) and (b) show that steady state response is obtained after 200s. The 
resonance phenomenon is observed with the exited frequency 𝜔𝜔� = 1.08𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠, in which 
the steady state amplitude of the displacement at buffer is over 10 times of amplitude of 
the excited oscillation 𝐴𝐴� = 1. While the excited frequency is 𝜔𝜔� = 1.22𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 ., the 
buffer oscillation is depressed that the amplitude of the steady-state response is much less 
than the amplitude of the excited oscillation 𝐴𝐴� = 1 .  

Figure 3  The history of longitudinal displacement at 𝑧𝑧 = 𝐿𝐿 in the reference case. The excited 
frequency is (a) 𝜔𝜔𝑒𝑒 = 1.08𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠  and (b) 𝜔𝜔𝑒𝑒 = 1.22𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 

Using the Fast Fourier Transport method, the histories of the longitudinal displacement 
at 𝑧𝑧 = 𝐿𝐿 are transformed into the frequency domain and depicted in Figure 3(a) for the 
excited frequencies  𝜔𝜔� = 0.2,1.08 and 1.22 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 It shows that the peaks with the 
maximum amplitudes have the frequency identical to the excited frequencies  𝜔𝜔� This 
observation indicates that the heave motion predominates the dynamic response of the 
fluid-filled lifting pipe accounting for the fluid-structural interaction. To determine the 
response frequency in the fluid-filled pipe with one-end closed subjected to the heave 
motion, the dynamic amplification factor for various excited frequency in the range of 
ωe~(0,2rad/s] are plotted in Figure 3(b). It shows that the resonance frequencies of the 
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predominant modes are chosen to determine the Rayleigh damping matrix. The constant-
average-acceleration method is adopted for the time integration. Unlike the structural 
model adopted in the classical and extended water hammer model, the shell-based 
structural model accounts for the radial inertial effects, as well as the gradient and curvature 
of the radial displacement around the wave front and boundaries. The model also offers 
flexibility in modeling various types of radial, longitudinal and rotational boundary 
conditions. This is the main reason to adopt the shell-based partitioned water hammer 
model for the water hammer problem in rising pipe for ocean mining impacted by the heave 
motion.  

Using the partitioned scheme, the fluid model and the structural model are solved 
sequentially and iterated until specified convergence obtained in each time step.  

4. REFERENCE CASE 
A rising pipe is considered without the effects of surrounded water and the flexible 

riser. The inner water is considered as in viscid fluid. The length of section OP is 𝐿𝐿� =
200𝑚𝑚 and 𝐿𝐿� = 800𝑚𝑚 for section PB. The mid-surface of pipe is 𝑅𝑅 = 0.2𝑚𝑚 with a 
thickness of ℎ = 15𝑚𝑚𝑚𝑚 . Pipe material density is 𝜌𝜌� = 7800𝑘𝑘𝑘𝑘/𝑚𝑚�  with the Young 
modulus of 𝐸𝐸 = 210𝐺𝐺𝐺𝐺𝐺𝐺  and a Poisson’s ratio of 𝑣𝑣 = 0.25. The internal flow has a 
density of 𝜌𝜌� = 1000𝑘𝑘𝑘𝑘/𝑚𝑚� with a bulk modulus of 𝐾𝐾� = 2.1𝐺𝐺𝐺𝐺𝐺𝐺. The lifting pump 
has a mass of 𝑀𝑀� = 7500𝑘𝑘𝑘𝑘 and the buffer has a mass of 𝑀𝑀� = 3000𝑘𝑘𝑘𝑘. The initial 
velocity of the internal flow is 𝑉𝑉(𝑧𝑧, 0) = 0. Since the present work is only interested in 
the dynamic response of the lifting pipe, the gravity force and the static hydraulic pressure 
along the longitudinal axis due to gravity are ignored.  

The boundary condition at the top is 𝐻𝐻��� = 0 for the fluid model and 𝑤𝑤(𝑧𝑧 = 0) =
𝑤𝑤�(𝑧𝑧 = 0) = 0 for the structural model. The excited heave motion at the top of the lifting 
pipe is 𝑢𝑢� = 𝐴𝐴�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑡𝑡, in which 𝐴𝐴� = 1 is adopted for all cases, the excited frequency 
is investigated in the range of 𝑤𝑤�~(0.2𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠]  that close to the frequency of ocean wave. 
At the pump and buffer, the boundary conditions are 𝑤𝑤(𝑧𝑧 = 𝐿𝐿�) = 𝑤𝑤�(𝑧𝑧 = 𝐿𝐿�) = 0 and 
𝑤𝑤(𝑧𝑧 = 0) = 𝑤𝑤�(𝑧𝑧 = 𝐿𝐿) = 0 for the structural model. Without column separation at the 
bottom of the lifting pipe, the fluid velocity is identical to the longitudinal velocity of the 
closed end, i.e., 𝑉𝑉(𝑧𝑧 = 𝐿𝐿) = 𝑢̇𝑢(𝑧𝑧 = 𝐿𝐿) where the dot denotes derivative with respect to 
time. Based on the natural frequency analysis, the first radial predominant frequency is 
𝑤𝑤� = 1.57𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 and the first longitudinal predominant frequency is 𝜔𝜔� = 24082.6𝑟𝑟𝑟𝑟𝑟𝑟/
𝑠𝑠. The damping ratio for the chosen modes to determine the Rayleigh damping matrix are 
set as 𝜉𝜉� = 𝜉𝜉� = 5%. In order to obtain steady state response, a long simulation time 𝑇𝑇 =
1000𝑠𝑠 is simulated. Based on mesh sensitive analysis, the element length is fixed as ∆𝐿𝐿 =
1𝑚𝑚 Considering the efficiency and accuracy, the Courant number adopt an integer value 
𝐶𝐶� = 10 to determine time step as △ 𝑡𝑡 = 𝐶𝐶𝐶𝐶 △ �
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predominant modes are chosen to determine the Rayleigh damping matrix. The constant-
average-acceleration method is adopted for the time integration. Unlike the structural 
model adopted in the classical and extended water hammer model, the shell-based 
structural model accounts for the radial inertial effects, as well as the gradient and curvature 
of the radial displacement around the wave front and boundaries. The model also offers 
flexibility in modeling various types of radial, longitudinal and rotational boundary 
conditions. This is the main reason to adopt the shell-based partitioned water hammer 
model for the water hammer problem in rising pipe for ocean mining impacted by the heave 
motion.  

Using the partitioned scheme, the fluid model and the structural model are solved 
sequentially and iterated until specified convergence obtained in each time step.  

4. REFERENCE CASE 
A rising pipe is considered without the effects of surrounded water and the flexible 

riser. The inner water is considered as in viscid fluid. The length of section OP is 𝐿𝐿� =
200𝑚𝑚 and 𝐿𝐿� = 800𝑚𝑚 for section PB. The mid-surface of pipe is 𝑅𝑅 = 0.2𝑚𝑚 with a 
thickness of ℎ = 15𝑚𝑚𝑚𝑚 . Pipe material density is 𝜌𝜌� = 7800𝑘𝑘𝑘𝑘/𝑚𝑚�  with the Young 
modulus of 𝐸𝐸 = 210𝐺𝐺𝐺𝐺𝐺𝐺  and a Poisson’s ratio of 𝑣𝑣 = 0.25. The internal flow has a 
density of 𝜌𝜌� = 1000𝑘𝑘𝑘𝑘/𝑚𝑚� with a bulk modulus of 𝐾𝐾� = 2.1𝐺𝐺𝐺𝐺𝐺𝐺. The lifting pump 
has a mass of 𝑀𝑀� = 7500𝑘𝑘𝑘𝑘 and the buffer has a mass of 𝑀𝑀� = 3000𝑘𝑘𝑘𝑘. The initial 
velocity of the internal flow is 𝑉𝑉(𝑧𝑧, 0) = 0. Since the present work is only interested in 
the dynamic response of the lifting pipe, the gravity force and the static hydraulic pressure 
along the longitudinal axis due to gravity are ignored.  

The boundary condition at the top is 𝐻𝐻��� = 0 for the fluid model and 𝑤𝑤(𝑧𝑧 = 0) =
𝑤𝑤�(𝑧𝑧 = 0) = 0 for the structural model. The excited heave motion at the top of the lifting 
pipe is 𝑢𝑢� = 𝐴𝐴�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑡𝑡, in which 𝐴𝐴� = 1 is adopted for all cases, the excited frequency 
is investigated in the range of 𝑤𝑤�~(0.2𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠]  that close to the frequency of ocean wave. 
At the pump and buffer, the boundary conditions are 𝑤𝑤(𝑧𝑧 = 𝐿𝐿�) = 𝑤𝑤�(𝑧𝑧 = 𝐿𝐿�) = 0 and 
𝑤𝑤(𝑧𝑧 = 0) = 𝑤𝑤�(𝑧𝑧 = 𝐿𝐿) = 0 for the structural model. Without column separation at the 
bottom of the lifting pipe, the fluid velocity is identical to the longitudinal velocity of the 
closed end, i.e., 𝑉𝑉(𝑧𝑧 = 𝐿𝐿) = 𝑢̇𝑢(𝑧𝑧 = 𝐿𝐿) where the dot denotes derivative with respect to 
time. Based on the natural frequency analysis, the first radial predominant frequency is 
𝑤𝑤� = 1.57𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 and the first longitudinal predominant frequency is 𝜔𝜔� = 24082.6𝑟𝑟𝑟𝑟𝑟𝑟/
𝑠𝑠. The damping ratio for the chosen modes to determine the Rayleigh damping matrix are 
set as 𝜉𝜉� = 𝜉𝜉� = 5%. In order to obtain steady state response, a long simulation time 𝑇𝑇 =
1000𝑠𝑠 is simulated. Based on mesh sensitive analysis, the element length is fixed as ∆𝐿𝐿 =
1𝑚𝑚 Considering the efficiency and accuracy, the Courant number adopt an integer value 
𝐶𝐶� = 10 to determine time step as △ 𝑡𝑡 = 𝐶𝐶𝐶𝐶 △ �
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5.1 DYNAMIC RESPONSE OF FLUID-FILLED LIFTING PIPE SUBJECTED TO 
HEAVE MOTION 

The present partitioned shell-based water hammer model is used to simulate the water 
hammer phenomenon in the reference case. For the iterative process between the structural 
model and the fluid model in each time step, the matched interface is adopted for the data 
transfer and the Aitken technique is adopted to accelerate the iterative process. Using the 
structural model for the empty lifting pipe, the displacement, velocity and acceleration field 
at 1000s are adopted as the initial conditions for the fluid-filled lifting pipe system.  

The histories of the displacement of the buffer are plotted in Figure 10(a) with excited 
frequency 𝜔𝜔� = 1.08𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 and in Figure 10(b) with excited frequency 𝜔𝜔� = 1.22𝑟𝑟𝑟𝑟𝑟𝑟/
𝑠𝑠 . Figure 10 (a) and (b) show that steady state response is obtained after 200s. The 
resonance phenomenon is observed with the exited frequency 𝜔𝜔� = 1.08𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠, in which 
the steady state amplitude of the displacement at buffer is over 10 times of amplitude of 
the excited oscillation 𝐴𝐴� = 1. While the excited frequency is 𝜔𝜔� = 1.22𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 ., the 
buffer oscillation is depressed that the amplitude of the steady-state response is much less 
than the amplitude of the excited oscillation 𝐴𝐴� = 1 .  

Figure 3  The history of longitudinal displacement at 𝑧𝑧 = 𝐿𝐿 in the reference case. The excited 
frequency is (a) 𝜔𝜔𝑒𝑒 = 1.08𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠  and (b) 𝜔𝜔𝑒𝑒 = 1.22𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 

Using the Fast Fourier Transport method, the histories of the longitudinal displacement 
at 𝑧𝑧 = 𝐿𝐿 are transformed into the frequency domain and depicted in Figure 3(a) for the 
excited frequencies  𝜔𝜔� = 0.2,1.08 and 1.22 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 It shows that the peaks with the 
maximum amplitudes have the frequency identical to the excited frequencies  𝜔𝜔� This 
observation indicates that the heave motion predominates the dynamic response of the 
fluid-filled lifting pipe accounting for the fluid-structural interaction. To determine the 
response frequency in the fluid-filled pipe with one-end closed subjected to the heave 
motion, the dynamic amplification factor for various excited frequency in the range of 
ωe~(0,2rad/s] are plotted in Figure 3(b). It shows that the resonance frequencies of the 
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predominant modes are chosen to determine the Rayleigh damping matrix. The constant-
average-acceleration method is adopted for the time integration. Unlike the structural 
model adopted in the classical and extended water hammer model, the shell-based 
structural model accounts for the radial inertial effects, as well as the gradient and curvature 
of the radial displacement around the wave front and boundaries. The model also offers 
flexibility in modeling various types of radial, longitudinal and rotational boundary 
conditions. This is the main reason to adopt the shell-based partitioned water hammer 
model for the water hammer problem in rising pipe for ocean mining impacted by the heave 
motion.  

Using the partitioned scheme, the fluid model and the structural model are solved 
sequentially and iterated until specified convergence obtained in each time step.  

4. REFERENCE CASE 
A rising pipe is considered without the effects of surrounded water and the flexible 

riser. The inner water is considered as in viscid fluid. The length of section OP is 𝐿𝐿� =
200𝑚𝑚 and 𝐿𝐿� = 800𝑚𝑚 for section PB. The mid-surface of pipe is 𝑅𝑅 = 0.2𝑚𝑚 with a 
thickness of ℎ = 15𝑚𝑚𝑚𝑚 . Pipe material density is 𝜌𝜌� = 7800𝑘𝑘𝑘𝑘/𝑚𝑚�  with the Young 
modulus of 𝐸𝐸 = 210𝐺𝐺𝐺𝐺𝐺𝐺  and a Poisson’s ratio of 𝑣𝑣 = 0.25. The internal flow has a 
density of 𝜌𝜌� = 1000𝑘𝑘𝑘𝑘/𝑚𝑚� with a bulk modulus of 𝐾𝐾� = 2.1𝐺𝐺𝐺𝐺𝐺𝐺. The lifting pump 
has a mass of 𝑀𝑀� = 7500𝑘𝑘𝑘𝑘 and the buffer has a mass of 𝑀𝑀� = 3000𝑘𝑘𝑘𝑘. The initial 
velocity of the internal flow is 𝑉𝑉(𝑧𝑧, 0) = 0. Since the present work is only interested in 
the dynamic response of the lifting pipe, the gravity force and the static hydraulic pressure 
along the longitudinal axis due to gravity are ignored.  

The boundary condition at the top is 𝐻𝐻��� = 0 for the fluid model and 𝑤𝑤(𝑧𝑧 = 0) =
𝑤𝑤�(𝑧𝑧 = 0) = 0 for the structural model. The excited heave motion at the top of the lifting 
pipe is 𝑢𝑢� = 𝐴𝐴�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑡𝑡, in which 𝐴𝐴� = 1 is adopted for all cases, the excited frequency 
is investigated in the range of 𝑤𝑤�~(0.2𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠]  that close to the frequency of ocean wave. 
At the pump and buffer, the boundary conditions are 𝑤𝑤(𝑧𝑧 = 𝐿𝐿�) = 𝑤𝑤�(𝑧𝑧 = 𝐿𝐿�) = 0 and 
𝑤𝑤(𝑧𝑧 = 0) = 𝑤𝑤�(𝑧𝑧 = 𝐿𝐿) = 0 for the structural model. Without column separation at the 
bottom of the lifting pipe, the fluid velocity is identical to the longitudinal velocity of the 
closed end, i.e., 𝑉𝑉(𝑧𝑧 = 𝐿𝐿) = 𝑢̇𝑢(𝑧𝑧 = 𝐿𝐿) where the dot denotes derivative with respect to 
time. Based on the natural frequency analysis, the first radial predominant frequency is 
𝑤𝑤� = 1.57𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 and the first longitudinal predominant frequency is 𝜔𝜔� = 24082.6𝑟𝑟𝑟𝑟𝑟𝑟/
𝑠𝑠. The damping ratio for the chosen modes to determine the Rayleigh damping matrix are 
set as 𝜉𝜉� = 𝜉𝜉� = 5%. In order to obtain steady state response, a long simulation time 𝑇𝑇 =
1000𝑠𝑠 is simulated. Based on mesh sensitive analysis, the element length is fixed as ∆𝐿𝐿 =
1𝑚𝑚 Considering the efficiency and accuracy, the Courant number adopt an integer value 
𝐶𝐶� = 10 to determine time step as △ 𝑡𝑡 = 𝐶𝐶𝐶𝐶 △ �
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fluid-filled rising pipe are  𝜔𝜔� = 0.4,1.08 𝑎𝑎𝑎𝑎𝑎𝑎 1.62 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 . The water hammer wave 
speed accounting for fluid-structural interaction effect has been proposed by Tijsseling 
(1990) in the form as 

          (4) 

The water hammer wave accounting for the fluid-structural interaction effects is  
𝑎𝑎� = 1296𝑚𝑚/𝑠𝑠 with a fundamental frequency of 𝑎𝑎�/4𝐿𝐿 = 0.407𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠. Obviously, the 
first resonance frequency is due to water hammer wave oscillation. The axial wave speed 
in the rising pipe wall is identical to the sound wave in the pipe material as 𝑎𝑎� = �𝐸𝐸/𝜌𝜌� =
5189𝑚𝑚/𝑠𝑠 with a fundamental frequency of 𝑎𝑎�/4𝐿𝐿 = 1.63𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠. It’s obviously that the 
third resonance frequency is dominated by the axial stress in the pipe wall. It shows that 
the third resonance frequency is close to the frequency of the axial wave rather than the 
frequency for the first mode (𝜔𝜔� = 1.57𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠). In other way, accounting for the fluid-
structural interaction, the buffer and pump shift the frequency for the first mode without 
influence the resonance frequency dominated by the structural dynamic response. The 
second resonance frequency is close to the average frequency of the first and third 
resonance frequencies. Physically, the combination of the water hammer wave and the 
axial stress wave is resonance with the excited frequency.  

The first two resonance frequencies can be obtained from the spectrum of the 
displacement at buffer excited by heave motion with any frequency, as shown in Figure 
3(a). Except the peaks dominate by the excited frequencies, Figure 4(a) shows that any 
peaks or dips in the displace spectrum corresponding to a resonance frequency predicted 
by the curve of dynamic amplification factor and the excited frequency presented in Figure 
4(b). Setting the excited frequency as ω_e=0.2,1.08rad/s, the spectrums of the 
displacements at the buffer are unable to predict the resonance frequency of ω=1.63rad/s 
that dominated by axial stress propagation. Hence, in order to predict the resonance 
frequency from the spectrum of the displacement at buffer subjected to specified excited 
frequency, one should include the resonant dominated by axial stress propagation. 
Compared to the method using the spectrum of the displacement, the method obtained the 
dynamic amplification factor for all excited frequency in the interested range requires more 
computation efforts. However, it provides more details than the spectrum method, such as 
the dynamic amplification factor and the frequency for the anti-resonance, e.g., the 
dynamic amplification factor at ω_e=1.22rad/s that means the buffer oscillation is 
diminished due to fluid-structural interaction effects. 
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Figure 4  (a)Single-sided amplitude spectrum of the history of displacement at the buffer for 
three excited frequencies; (b) Dynamic amplification factor using various viscous damping ratio 

with the excited frequency in the range of 𝜔𝜔�~[0.02,2]𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠. 

5.2 EFFECTS OF PIPE LENGTH AND BUFFER MASS ON THE DYNAMIC 
RESPONSE OF FLUID-FILLED RISING PIPE 

Fixing the length of section OP at 𝐿𝐿� = 200𝑚𝑚  and varying the length 𝐿𝐿�  of the 
section PB, the pipe length 𝐿𝐿 = 𝐿𝐿� + 𝐿𝐿� decreases from 5000m to 1000m with an interval 
of 500m. The excited frequency 𝜔𝜔� increase from 0 rad/s to 2 rad/s with an interval of 
0.02 rad/s. The first radial predominate frequency is fixed, and the longitudinal 
predominate frequency is updated for each run with different pipe length. The Courant 
number is set as 𝐿𝐿/500. The rest parameters are the same as provided in the reference 
case. To investigate the difference between the displacement at the buffer to the 
displacement at the top of the lifting pipe, the dynamic amplification factor is introduced 
as  

            (5) 

where  𝐴𝐴�,� 𝑖𝑖 = 1,2,3 are the amplitudes of the first four maximum peaks in frequency 
domain transformed from the history of displacement at the buffer, 𝐴𝐴�� is the amplitude 
of the excited displacement history at the top of the lifting pipe in frequency domain. Since 
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5.1 DYNAMIC RESPONSE OF FLUID-FILLED LIFTING PIPE SUBJECTED TO 
HEAVE MOTION 

The present partitioned shell-based water hammer model is used to simulate the water 
hammer phenomenon in the reference case. For the iterative process between the structural 
model and the fluid model in each time step, the matched interface is adopted for the data 
transfer and the Aitken technique is adopted to accelerate the iterative process. Using the 
structural model for the empty lifting pipe, the displacement, velocity and acceleration field 
at 1000s are adopted as the initial conditions for the fluid-filled lifting pipe system.  

The histories of the displacement of the buffer are plotted in Figure 10(a) with excited 
frequency 𝜔𝜔� = 1.08𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 and in Figure 10(b) with excited frequency 𝜔𝜔� = 1.22𝑟𝑟𝑟𝑟𝑟𝑟/
𝑠𝑠 . Figure 10 (a) and (b) show that steady state response is obtained after 200s. The 
resonance phenomenon is observed with the exited frequency 𝜔𝜔� = 1.08𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠, in which 
the steady state amplitude of the displacement at buffer is over 10 times of amplitude of 
the excited oscillation 𝐴𝐴� = 1. While the excited frequency is 𝜔𝜔� = 1.22𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 ., the 
buffer oscillation is depressed that the amplitude of the steady-state response is much less 
than the amplitude of the excited oscillation 𝐴𝐴� = 1 .  

Figure 3  The history of longitudinal displacement at 𝑧𝑧 = 𝐿𝐿 in the reference case. The excited 
frequency is (a) 𝜔𝜔𝑒𝑒 = 1.08𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠  and (b) 𝜔𝜔𝑒𝑒 = 1.22𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 

Using the Fast Fourier Transport method, the histories of the longitudinal displacement 
at 𝑧𝑧 = 𝐿𝐿 are transformed into the frequency domain and depicted in Figure 3(a) for the 
excited frequencies  𝜔𝜔� = 0.2,1.08 and 1.22 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 It shows that the peaks with the 
maximum amplitudes have the frequency identical to the excited frequencies  𝜔𝜔� This 
observation indicates that the heave motion predominates the dynamic response of the 
fluid-filled lifting pipe accounting for the fluid-structural interaction. To determine the 
response frequency in the fluid-filled pipe with one-end closed subjected to the heave 
motion, the dynamic amplification factor for various excited frequency in the range of 
ωe~(0,2rad/s] are plotted in Figure 3(b). It shows that the resonance frequencies of the 
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fluid-filled rising pipe are  𝜔𝜔� = 0.4,1.08 𝑎𝑎𝑎𝑎𝑎𝑎 1.62 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 . The water hammer wave 
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(1990) in the form as 
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frequency for the first mode (𝜔𝜔� = 1.57𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠). In other way, accounting for the fluid-
structural interaction, the buffer and pump shift the frequency for the first mode without 
influence the resonance frequency dominated by the structural dynamic response. The 
second resonance frequency is close to the average frequency of the first and third 
resonance frequencies. Physically, the combination of the water hammer wave and the 
axial stress wave is resonance with the excited frequency.  

The first two resonance frequencies can be obtained from the spectrum of the 
displacement at buffer excited by heave motion with any frequency, as shown in Figure 
3(a). Except the peaks dominate by the excited frequencies, Figure 4(a) shows that any 
peaks or dips in the displace spectrum corresponding to a resonance frequency predicted 
by the curve of dynamic amplification factor and the excited frequency presented in Figure 
4(b). Setting the excited frequency as ω_e=0.2,1.08rad/s, the spectrums of the 
displacements at the buffer are unable to predict the resonance frequency of ω=1.63rad/s 
that dominated by axial stress propagation. Hence, in order to predict the resonance 
frequency from the spectrum of the displacement at buffer subjected to specified excited 
frequency, one should include the resonant dominated by axial stress propagation. 
Compared to the method using the spectrum of the displacement, the method obtained the 
dynamic amplification factor for all excited frequency in the interested range requires more 
computation efforts. However, it provides more details than the spectrum method, such as 
the dynamic amplification factor and the frequency for the anti-resonance, e.g., the 
dynamic amplification factor at ω_e=1.22rad/s that means the buffer oscillation is 
diminished due to fluid-structural interaction effects. 
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Figure 4  (a)Single-sided amplitude spectrum of the history of displacement at the buffer for 
three excited frequencies; (b) Dynamic amplification factor using various viscous damping ratio 

with the excited frequency in the range of 𝜔𝜔�~[0.02,2]𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠. 

5.2 EFFECTS OF PIPE LENGTH AND BUFFER MASS ON THE DYNAMIC 
RESPONSE OF FLUID-FILLED RISING PIPE 
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section PB, the pipe length 𝐿𝐿 = 𝐿𝐿� + 𝐿𝐿� decreases from 5000m to 1000m with an interval 
of 500m. The excited frequency 𝜔𝜔� increase from 0 rad/s to 2 rad/s with an interval of 
0.02 rad/s. The first radial predominate frequency is fixed, and the longitudinal 
predominate frequency is updated for each run with different pipe length. The Courant 
number is set as 𝐿𝐿/500. The rest parameters are the same as provided in the reference 
case. To investigate the difference between the displacement at the buffer to the 
displacement at the top of the lifting pipe, the dynamic amplification factor is introduced 
as  

            (5) 

where  𝐴𝐴�,� 𝑖𝑖 = 1,2,3 are the amplitudes of the first four maximum peaks in frequency 
domain transformed from the history of displacement at the buffer, 𝐴𝐴�� is the amplitude 
of the excited displacement history at the top of the lifting pipe in frequency domain. Since 
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model and the fluid model in each time step, the matched interface is adopted for the data 
transfer and the Aitken technique is adopted to accelerate the iterative process. Using the 
structural model for the empty lifting pipe, the displacement, velocity and acceleration field 
at 1000s are adopted as the initial conditions for the fluid-filled lifting pipe system.  

The histories of the displacement of the buffer are plotted in Figure 10(a) with excited 
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resonance phenomenon is observed with the exited frequency 𝜔𝜔� = 1.08𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠, in which 
the steady state amplitude of the displacement at buffer is over 10 times of amplitude of 
the excited oscillation 𝐴𝐴� = 1. While the excited frequency is 𝜔𝜔� = 1.22𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 ., the 
buffer oscillation is depressed that the amplitude of the steady-state response is much less 
than the amplitude of the excited oscillation 𝐴𝐴� = 1 .  

Figure 3  The history of longitudinal displacement at 𝑧𝑧 = 𝐿𝐿 in the reference case. The excited 
frequency is (a) 𝜔𝜔𝑒𝑒 = 1.08𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠  and (b) 𝜔𝜔𝑒𝑒 = 1.22𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 

Using the Fast Fourier Transport method, the histories of the longitudinal displacement 
at 𝑧𝑧 = 𝐿𝐿 are transformed into the frequency domain and depicted in Figure 3(a) for the 
excited frequencies  𝜔𝜔� = 0.2,1.08 and 1.22 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 It shows that the peaks with the 
maximum amplitudes have the frequency identical to the excited frequencies  𝜔𝜔� This 
observation indicates that the heave motion predominates the dynamic response of the 
fluid-filled lifting pipe accounting for the fluid-structural interaction. To determine the 
response frequency in the fluid-filled pipe with one-end closed subjected to the heave 
motion, the dynamic amplification factor for various excited frequency in the range of 
ωe~(0,2rad/s] are plotted in Figure 3(b). It shows that the resonance frequencies of the 
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the simulation time is finite, the amplitude 𝐴𝐴��  extracted from the numerical model is 
slightly difference to 𝐴𝐴� used to definite the amplitude of the forced oscillation. 

Figure 5 Effect of the pipe length on dynamic response of fluid-filled lifting pipe subjected to 
various frequency of heave motion 

Figure 5 depicts the contours of the dynamic amplification factor  for different 
length of the lifting pipe with various excited frequency in the range [0.02,2] rad/s. It shows 
that three resonance frequencies shift to higher frequency as decrease the length of lifting 
pipe. As a result, some resonant observed in rising system with 𝐿𝐿 𝐿 𝐿𝐿𝐿𝐿𝐿𝐿  is not 
activated in the investigated frequency range for a shorter rising pipe. The white dash lines 
in Figure 5 relates the three resonance frequencies to the rising pipe length for three and 
can be fitted by the following expression 

 (6) 

in which 𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖𝑖 refers to three peaks observed in Figure 6. The fitting parameters are 
𝑎𝑎� =12 61.14𝑚𝑚𝑚𝑚𝑚 , 𝑎𝑎� =3 426.9𝑚𝑚𝑚𝑚𝑚  and 𝑎𝑎� =5135𝑚𝑚 𝑚𝑚𝑚  with the coefficient of 
determination 𝑅𝑅� ≥ 0.99. The values of 𝑎𝑎� and 𝑎𝑎� are closed to the wave speed of the 
classical water hammer wave speed 𝑎𝑎� =12 96𝑚𝑚𝑚𝑚𝑚 and the longitudinal stress wave 
speed 𝑎𝑎� =51 89𝑚𝑚𝑚𝑚𝑚 . This observation indicates that the first and third resonance 
frequencies are dominated by propagation of the water hammer wave and the longitudinal 
stress wave, respectively. The value of 𝑎𝑎� is closed to the mean values of 𝑎𝑎� and 𝑎𝑎�. 
Hence, the second resonant phenomenon is the results from the coupling effects between 
the water hammer wave and the longitudinal stress wave.   
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Figure 6  Effects of the buffer mass on the rising pipe dynamic response 

 
Figure 6 depicts the relation of the dynamic response factor  and the excited 

frequency with various buffer mass. It shows that the buffer mass has negligible effect on 
the first resonance frequency 𝜔𝜔� = 0.4𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 which is dominated by the water hammer 
wave speed. Increase of the buffer mass decreases the second (𝜔𝜔� ≈ 0.4𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠) and third 
(𝜔𝜔� ≈ 1.62𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 ) resonance frequencies. This observation is consistent to the mass 
effects on the frequency shifting in the empty pipe.  

5.3 EFFECTS OF THE FLUID INITIAL VELOCITY ON THE DYNAMIC 
RESPONSE OF THE FLUID-FILLED LIFTING PIPE 

The initial fluid velocity is varied in the reference case to investigate its effect on the 
dynamic response of the rising pipe subjected to sinusoidal heave motion. Since the 
dynamic response of the rising pipe is dominated by the heave motion, Figure 7(a) shows 
that the initial fluid velocity has negligible influence on the dynamic response of the rising 
pipe. Due to the resonant, the amplitude of the peak in the displacement spectrum at 𝑤𝑤 =
0.4𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 with the excited frequency 𝑤𝑤� = 0.4𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 is much higher than those with 
other excited frequency, which is removed from plotted in Figure 7(b). It shows that the 
amplitudes for the peak in the displacement spectrum at 𝑤𝑤 = 0.4𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 are proportional 
to the magnitude of the initial fluid velocity. The direction of the initial fluid velocity has 
negligible effects on the dynamic response of the rising pipe with one-end closed while 
subject to sinusoidal heave motion. 
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Figure 7 Effects of the fluid initial velocity on the rising pipe dynamic response 

6. CONCLUSIONS 
Subjected to sinusoidal heave motion, the dynamic response of the lifting pipe system 

is solved using the finite element using the partitioned shell-based water hammer model. 
The effects of the masses of intermediate pump and buffer at the bottom of the pipe, as 
well as the length of the lifting pipe, have been investigated for the dynamic response of 
lifting pipe. In additional, the effect of the initial flow velocity has been investigated for 
dynamic response of the fluid-filled pipe subjected to sinusoidal heave motion. For 
conveniently comparation, the time domains of displacement histories are transformed into 
frequency domain using the Fast Fourier Transform method. The dynamic amplification 
factor is introduced to illustrate the difference between the dynamic response at the bottom 
of the lifting pipe and the forced oscillation top of the pipe. The following conclusions and 
observations can be drawn from the investigated problem in the present study: 

(1) The frequencies of the dynamic responses at the bottom of a fluid-filled lifting pipe 
are predominated by the excited frequency of the heave motion. 

(2) From the response spectrum for the dynamic response at the bottom of the fluid-
filled pipe, one can extract the frequencies for the first two resonances that correspond to 
the water hammer pressure wave and the coupling between the pressure wave and stress 
wave in the pipe. Hence, the natural frequency for the empty pipe should be conducted to 
extract the resonance frequency corresponding to the longitudinal vibration of the lifting 
pipe. 

(3) There is always an excited frequency a bit over than the resonance frequency to 
depress the dynamic response of the lifting pipe. This characteristic can be used for the 
control of longitudinal vibration. 
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Figure 7 Effects of the fluid initial velocity on the rising pipe dynamic response 

6. CONCLUSIONS 
Subjected to sinusoidal heave motion, the dynamic response of the lifting pipe system 

is solved using the finite element using the partitioned shell-based water hammer model. 
The effects of the masses of intermediate pump and buffer at the bottom of the pipe, as 
well as the length of the lifting pipe, have been investigated for the dynamic response of 
lifting pipe. In additional, the effect of the initial flow velocity has been investigated for 
dynamic response of the fluid-filled pipe subjected to sinusoidal heave motion. For 
conveniently comparation, the time domains of displacement histories are transformed into 
frequency domain using the Fast Fourier Transform method. The dynamic amplification 
factor is introduced to illustrate the difference between the dynamic response at the bottom 
of the lifting pipe and the forced oscillation top of the pipe. The following conclusions and 
observations can be drawn from the investigated problem in the present study: 

(1) The frequencies of the dynamic responses at the bottom of a fluid-filled lifting pipe 
are predominated by the excited frequency of the heave motion. 

(2) From the response spectrum for the dynamic response at the bottom of the fluid-
filled pipe, one can extract the frequencies for the first two resonances that correspond to 
the water hammer pressure wave and the coupling between the pressure wave and stress 
wave in the pipe. Hence, the natural frequency for the empty pipe should be conducted to 
extract the resonance frequency corresponding to the longitudinal vibration of the lifting 
pipe. 

(3) There is always an excited frequency a bit over than the resonance frequency to 
depress the dynamic response of the lifting pipe. This characteristic can be used for the 
control of longitudinal vibration. 
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