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ABSTRACT: In Canada’s oil sands industry, the processing and storage of fluid fine tailings is 
important because it directly impacts land usage and reclamation, water and thermal energy 
requirements as well as environmental stewardship and mine sustainability. A key technology used 
for this purpose is inline flocculation, wherein existing inventories of fluid fine tailings are 
withdrawn from tailings storage facilities and mixed with polymer flocculants. These flocculated 
tailings can be then sent through additional process stages (e.g. evaporation, centrifugation, 
filtration) to promote dewatering and improved geotechnical characteristics of the resulting 
deposits. The polymer type, dosage and inline mixing conditions primarily dictate the efficacy of 
the inline flocculation process. Presently, numerous measurements are taken to establish 
flocculation performance. Some of these require samples to be collected and analyzed, meaning 
that such measurements cannot be used for real-time process control. Others, such as online FBRM 
(focus beam reflectance measurement), can be used for real-time process control but are often 
challenging and expensive to deploy in a commercial operation. The present study represents a 
preliminary assessment of the use of pressure measurements to monitor flocculation performance 
using a pilot-scale inline flocculation rig. Tests were conducted at different flow rates and polymer 
injection rates/concentrations. The test rig was fitted with 4 differential pressure sensors positioned 
at different axial locations. The pressure gradients measured just downstream of the inline mixer 
were primarily dictated by the production, and subsequent break-up, of the shear-sensitive floc 
structures and thus were highly sensitive to changes in polymer dosage at any given fluid tailings 
feed rate. A relationship among conventional performance metrics (e.g. floc size from FBRM) and 
maximum pressure gradient measured downstream of the mixer was observed, i.e. the same 
optimal polymer dosage was indicated by conventional measures and peak pressure gradient.  
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NOTATION 
CST Capillary Suction Time (s) 
CWR Clay-Water Ratio (-) 
DP 
FBRM 
P 
QFT 
QPS 
z 

Differential Pressure (Pa) 
Focused Beam Reflectance Measurement 
Pressure (Pa) 
Feed tailings flow rate (L/min) 
Polymer solution flow rate (L/min) 
Axial position (m) 

p Bingham plastic viscosity (Pa·s) 
 Fluid or mixture density (kg/m3) 
y Yield stress / Bingham yield stress (Pa) 

1. BACKGROUND 
In the mining and mineral processing industry, billions of tonnes of fluid tailings are 

stored in dedicated containment areas, often referred to Tailings Storage Facilities, or 
TSFs (Wang et al., 2014; Coffey et al., 2021). Because the nature of the solids present in 
these tailings, i.e. particles that are very fine (submicron to ~ 44 m in size) and typically 
surface-active, solid-liquid separation is difficult and thus the fluid tailings contain 
substantial quantities of water that need to be reclaimed and reused within the process 
(Masliyah et al., 2004; Wang et al., 2014). Moreover, the design, operation and 
management of TSFs pose many challenges from capacity limitations to more serious 
issues such as containment breaches (Coffey et al., 2021). Clearly, tailings management 
is a global issue especially as the need for rare earth metals continues to grow (Liang et 
al., 2022). 

In Canada, the mining and extraction of extra-heavy crude oil, known as bitumen, 
requires about 3m3 water for every 1m3 bitumen produced (Masliyah et al., 2004) and 
stored fluid tailings volumes were 1 345 Mm3 in 2021 (Alberta Energy Regulator, 2021). 
Consequently, processing of fluid tailings to reduce accumulated volumes, provide 
clarified water for reuse in the process and produce reclaimable tailings deposits is of 
paramount importance. Numerous technologies are used to for this purpose, including 
filtration, electrofiltration and centrifugation (Wang et al., 2014). Each of these 
technologies requires the fluid tailings to be pretreated to promote fine-particle 
aggregation, enhance solid-liquid separation and promote dewatering. Presently, in-pipe 
mixing of fluid fine tailings with a dilute polymer solution, known as inline flocculation, 
is the method of choice (Wells et al., 2011; Wang et al., 2014, Pougatch et al., 2021). The 
success of the inline flocculation depends primarily on (Pougatch at al., 2021) efficient 
mixing of the polymer solution into the fluid tailings; polymer adsorption onto the fine 
particles; and the balance of floc (aggregate) formation and growth with floc breakdown 
due to shear exposure. From an operational perspective, the aforementioned conditions 
are affected by the fluid tailings properties, polymer properties and dosage, the mixing 
device used to introduce the polymer solution into the fluid tailings, the hydrodynamics 
downstream of the mixer, and the downstream residence time (or shear exposure) (Wells 
et al., 2011; Gillies et al., 2012; Neelakantan et al., 2018).  
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Since so many factors affect the inline flocculation process, it is critical to be able to 
assess its performance. Some of the current assessment methods (Revington et al., 2011; 
2018 COSIA Tailings Report, 2019) involve the withdrawal and collection of samples at 
various axial positions downstream of the polymer-fluid tailings mixing point, followed 
by laboratory analysis, e.g. yield stress (y), final clay-to-water ratio (CWR) after 
dewatering, methylene blue index (MBI). Additionally, the ‘Capillary Suction Test’ 
(CST), which is used an indicator of the longer-term tailings deposit performance (Gray, 
2015; Gumfekar et al., 2019)), can be conducted using a subsample of the flocculant-
dosed tailings. The primary deficiency with each of these performance indicators is that a 
sample (or samples) must be collected and then analyzed, meaning it could be hours (or 
days) before the results are known. This approach is clearly not useful for real-time 
process monitoring and control. The only online techniques that are regularly used are to 
insert a focus beam reflectance measurement (FBRM) or particle vision and 
measurement (PVM) device into the flow downstream of the mixing point. It has been 
demonstrated that variations in FBRM results typically track with operating changes 
(Gumfekar et al., 2019; 2018 COSIA Tailings Report) but it is not proven that the floc 
sizes or size distributions reported by an FBRM are quantitatively meaningful in 
flocculated oil sand tailings applications. Moreover, there are known to be issues with 
probe fouling due to the presence of bitumen (Saraka et al., 2019). The purpose of the 
present study, then, is to determine if differential pressure measurements made 
downstream of the mixing location could be used as a flocculation performance indicator.   

2. METHOD 
Figure 1 provides a basic overview of the pilot-scale, flocculated tailings flow line 

located at the Coanda Research and Development Corporation facility in Edmonton, 
Canada. The piping is 50mm (nominal) diameter and 33 m in length. As shown in the 
diagram, the fluid tailings and the dilute polymer solution are fed, using different pumps, 
to the polymer injection device (Revington et al., 2011). Each of the feed lines is 
equipped with a flow meter, such that the total flow downstream of the injector is the 
sum of the two feed flow rates (fluid tailings + polymer solution). Downstream of the 
injector, there are a number of pressure transmitters, differential pressure sensors and 
sampling ports. Note that Figure 1 does not show all the sensors or sampling locations on 
the line; those relevant to the present study are described in Table 1. The positions of the 
differential pressure sensors are listed relative to the injector. The spacing between the 
high- and low-pressure sides of each sensor is 1.00 m. The position of the sampling point 
nearest to each DP cell is also listed in Table 1. The FBRM is located just 0.6 m from the 
pipe discharge, i.e. 32.4 m downstream of the injector. 

Table 2 shows the run conditions completed as part of this study. The fluid tailings 
properties / composition were held constant for all 4 runs: specifically, the density was 
1200 kg/m3, with measured Bingham fluid properties of y = 2 Pa and p = 0.007 Pa·s. 
Note that within each run, the fluid tailings flow rate is held constant and the polymer 
injection flow rate is varied, such that a range of polymer dosages in the mixed, 
flocculant-dosed tailings could be studied. For this study, polymer dosages from 1200 to 
2200 ppm were tested. In this paper, we focus on Runs 1109 and 1110, where the MFT 
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flow rate was roughly doubled (from 103 to 219 L/min) while the polymer flocculant 
type and dosage were fixed. 

Fig.1  A PFD-style illustration of the pilot-scale, flocculated tailings flow line located at 
Coanda Research and Development Corporation.  

Table 1 
Locations of differential pressure sensors and nearest sampling ports (see Figure 1) 

DP 
sensor

Distance downstream 
from injector (m)

Nearest 
sampling port

Location relative to the 
nearest DP sensor

01 2.44 A 0.43 m upstream
02 4.58 B 1.05 m downstream
03 16.7 C 1.22 m downstream
04 29.2 D 1.22 m downstream

Table 2 
Run conditions evaluated during the current study 

Test 
No.

Fluid tailings 
feed flow rate 
(L/min)

Polymer concentration
in injected solution 
(wt %)

Final polymer flocculant dosages in 
flocculated tailings (ppm)

1109 103 0.25 1200, 1400, 1600, 1800, 2000, 2200
1110 219 0.25 1200, 1400, 1600, 1800, 2000, 2200
1111 372 0.25 1200, 1400, 1600, 1800, 2000, 2200
1112 108 0.65 1200, 1400, 1600, 1800, 2000, 2200

Pressure loss and flow data were collected at a frequency of 10 Hz and time-averaged 
over intervals where the test conditions were constant, as shown in Figure 2.  Signals 
from the FBRM were analyzed and the mean floc size reported for the same time interval 
over which the pressure loss and flow data were constant. Samples were collected and 
analyzed, and the measured Capillary Suction Time (CST) and Final Clay Water Ratio 
(CWR) of a settled bed were determined. Briefly, a CST test determines how quickly a 
given amount of water flows into an absorbent filter paper because of capillary action 
(Gray, 2015). It is designed to give an indication of the ability to filter the flocculated 
tailings, and a lower value of CST (in seconds) suggests better filtration (water removal) 
is possible. It should be noted that other sample analyses were conducted but these are 
not reported here. 
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Fig.2. Measured test conditions during a portion of Test 1110: (a) Total flow rate, i.e. feed 
tailings + polymer solution combined flow (L/min); (b) polymer dosage in flocculated tailings 

(ppm); (c) pressure gradient measured at DP04 (Pa/m). The dotted rectangles show the 
intervals over which time averages were taken for subsequent analysis.  

3. RESULTS AND DISCUSSION 
For each of the test conditions and final flocculant dosages described in Table 2, 

pressure gradients were analyzed over the periods where relatively steady readings were 
obtained. Figure 2 shows an example of these periods where the pressure gradients and 
flow rates were stable. Also, as mentioned above, FBRM signals and flocculated tailings 
samples were collected during these periods. Recall that within each run, the feed tailings 
flow rate was kept constant while six different final flocculant dosages were tested. The 
first objective was to evaluate how the pressure gradients varied with distance 
downstream of the injector for each test, and Figure 3 illustrates this result for Run 1110 
(QFT = 219 L/min) and final flocculant dosages of 1200 – 2000 ppm. In Figure 3, the four 
different DP cell measurements are normalized by the DP04 value (for a given run). It 
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can immediately be seen that the normalized pressure gradients at DP03 are close to 
unity, meaning there is little axial variation of pressure gradient over the last 20m of the 
loop. Figure 3 also shows that the pressure gradients at DP01 and DP02 are noticeably 
higher than those measured at DP04, such that the normalized pressure gradients at these 
positions are, in some cases, as much as 3.5 times greater than those measured 
downstream at DP04. It is also immediately apparent that normalized pressure gradients 
at the two locations just downstream of the injector, DP01 and DP02, vary quite 
significantly with final flocculant dosage; in other words, the flocculant dosage has a 
notable effect on the pressure gradient at these positions. Considering DP01, for example, 
the lowest normalized pressure gradient is associated with a flocculant dosage of 2000 
ppm, while the highest value was observed for the 1600 ppm test. The other normalized 
DP01 measurements for the other flocculant dosages (1200, 1400, 1800ppm) fell 
between the aforementioned bounds. It should be noted that the 2200 ppm test was not 
included on this figure as it was essentially identical to the 2000 ppm data points. The 
variation of pressure gradient at DP01 and DP02 with flocculant dosage appears to be 
related to the key processes required to produce good-quality flocculated tailings: in 
particular, the extent of mixing between the feed tailings and the polymer solution, and 
the particle aggregation and the formation of flocs. If the mixing is relatively poor, or if 
the formed flocs are quickly broken down, one would expect pressure gradients that vary 
little with axial position, e.g. 2000 ppm in Figure 3. If the mixing is effective and particle 
aggregation / floc formation occurs, then the mixture yield stress will increase 
significantly (Gillies et al., 2012) and the pressure gradients downstream of the injector 
should be higher than those measured near the end of the pipe, where flocs have broken 
down and the resulting mixture yield stress is greatly reduced (Gillies et al., 2012). It 
should be noted that although the results are not shown here, plots showing the variation 
of normalized pressure gradient with axial position for the other tests (1109, 1111, 1112) 
gave similar trends as those shown in Figure 3 (for Run 1110). 

Fig.3.  Variation of frictional pressure gradient with axial position, normalized using the 
pressure gradient measured near the pipe loop discharge (DP04): Test 1110, QFT = 219 L/min. 
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In Figure 4, the measurements collected at DP01 for the different final flocculant 
dosages are compared, as this is the location where the maximum normalized pressure 
gradients were observed in Figure 3. It can be seen that the maximum pressure gradient 
occurs at a flocculant dosage of 1600 ppm. The next highest dP/dz occurs at 1400 ppm, 
with the other dosages yielding substantially lower values. Because of the way the tests 
were conducted, though, the total flow rate (i.e. QFT + QPS) increases with each final 
flocculant dosage: the feed tailings flow rate is kept constant but QPS must be increased to 
achieve the desired dosage.  

Fig.4.  Variation of measured pressure gradient at DP01 with polymer dosage and total flow rate 
for Test 1110 (QFT = 219 L/min). 
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and changing rapidly with axial position, these values can be viewed as a reasonable 
approximation for flocculated tailings where the feed and polymer solution have been 
well-mixed, and assuming significant floc growth followed by some shear-related 
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can immediately be seen that the normalized pressure gradients at DP03 are close to 
unity, meaning there is little axial variation of pressure gradient over the last 20m of the 
loop. Figure 3 also shows that the pressure gradients at DP01 and DP02 are noticeably 
higher than those measured at DP04, such that the normalized pressure gradients at these 
positions are, in some cases, as much as 3.5 times greater than those measured 
downstream at DP04. It is also immediately apparent that normalized pressure gradients 
at the two locations just downstream of the injector, DP01 and DP02, vary quite 
significantly with final flocculant dosage; in other words, the flocculant dosage has a 
notable effect on the pressure gradient at these positions. Considering DP01, for example, 
the lowest normalized pressure gradient is associated with a flocculant dosage of 2000 
ppm, while the highest value was observed for the 1600 ppm test. The other normalized 
DP01 measurements for the other flocculant dosages (1200, 1400, 1800ppm) fell 
between the aforementioned bounds. It should be noted that the 2200 ppm test was not 
included on this figure as it was essentially identical to the 2000 ppm data points. The 
variation of pressure gradient at DP01 and DP02 with flocculant dosage appears to be 
related to the key processes required to produce good-quality flocculated tailings: in 
particular, the extent of mixing between the feed tailings and the polymer solution, and 
the particle aggregation and the formation of flocs. If the mixing is relatively poor, or if 
the formed flocs are quickly broken down, one would expect pressure gradients that vary 
little with axial position, e.g. 2000 ppm in Figure 3. If the mixing is effective and particle 
aggregation / floc formation occurs, then the mixture yield stress will increase 
significantly (Gillies et al., 2012) and the pressure gradients downstream of the injector 
should be higher than those measured near the end of the pipe, where flocs have broken 
down and the resulting mixture yield stress is greatly reduced (Gillies et al., 2012). It 
should be noted that although the results are not shown here, plots showing the variation 
of normalized pressure gradient with axial position for the other tests (1109, 1111, 1112) 
gave similar trends as those shown in Figure 3 (for Run 1110). 

Fig.3.  Variation of frictional pressure gradient with axial position, normalized using the 
pressure gradient measured near the pipe loop discharge (DP04): Test 1110, QFT = 219 L/min. 
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In Figure 4, the measurements collected at DP01 for the different final flocculant 
dosages are compared, as this is the location where the maximum normalized pressure 
gradients were observed in Figure 3. It can be seen that the maximum pressure gradient 
occurs at a flocculant dosage of 1600 ppm. The next highest dP/dz occurs at 1400 ppm, 
with the other dosages yielding substantially lower values. Because of the way the tests 
were conducted, though, the total flow rate (i.e. QFT + QPS) increases with each final 
flocculant dosage: the feed tailings flow rate is kept constant but QPS must be increased to 
achieve the desired dosage.  

Fig.4.  Variation of measured pressure gradient at DP01 with polymer dosage and total flow rate 
for Test 1110 (QFT = 219 L/min). 
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5b shows, the change in pressure gradient because of the change in flow rate is less than 
1.5%. In other words, for a given test, it is clear that polymer dosage is the primary 
independent parameter.  

  

Fig.5.  Predicted pressure gradient changes based on flow rate only, for flow of a Bingham fluid   
( = 1200 kg/m3; y = 80 Pa; p = 34 mPa·s) in a pipe D = 0.05 m: a) Flow curve showing the flow 

rate range for Run 1110; b) per cent increase in frictional pressure gradient with flow rate             
for Run 1110.  
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Fig.6.  Comparison of conventional key performance indicators (CST, mean floc size, Final 
CWR) against the peak pressure gradient measured at DP01 for Run 1109 (left) and Run 1110 

(right). The optimal dosage for each run, determined without the pressure gradient 
measurements, is indicated by the dotted arrows. 
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5b shows, the change in pressure gradient because of the change in flow rate is less than 
1.5%. In other words, for a given test, it is clear that polymer dosage is the primary 
independent parameter.  

  

Fig.5.  Predicted pressure gradient changes based on flow rate only, for flow of a Bingham fluid   
( = 1200 kg/m3; y = 80 Pa; p = 34 mPa·s) in a pipe D = 0.05 m: a) Flow curve showing the flow 

rate range for Run 1110; b) per cent increase in frictional pressure gradient with flow rate             
for Run 1110.  
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Fig.6.  Comparison of conventional key performance indicators (CST, mean floc size, Final 
CWR) against the peak pressure gradient measured at DP01 for Run 1109 (left) and Run 1110 

(right). The optimal dosage for each run, determined without the pressure gradient 
measurements, is indicated by the dotted arrows. 
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4. SUMMARY AND RECOMMENDATIONS 
In the inline flocculation of tailings, a relatively dilute fine-particle tailings stream is 

mixed with a dilute polymer solution to promote particle aggregation (“flocculation”) and 
eventually improved dewatering and consolidation properties. Inline flocculation requires 
efficient mixing of the polymer solution and fine tailings streams, polymer adsorption 
onto the fine particles, and floc (aggregate) formation and growth. Continued mixing / 
shearing will cause floc breakdown which negatively impacts the downstream separation 
processes (e.g. centrifugation, filtration). It is therefore necessary to assess when optimal 
operating conditions have been achieved, and typically, a combination of inline 
measurements (e.g. FBRM) and offline sample analyses (e.g. CST, CWR) is used to 
identify this optimum. In this study, we have conducted a preliminary analysis of the use 
of a series of pressure gradient measurements, located downstream of the mixing point, 
to determine the optimal operating conditions. 

It has been clearly shown that there is a significant variation of frictional pressure 
gradient with axial position downstream of the mixing point. With the 50 mm (diameter) 
by 33 m (length) flocculated tailings flow loop used for this study, it was found that a 
constant pressure gradient is obtained about 20 m downstream of the mixing point – or 
sooner, depending on feed tailings flow rate and polymer dosage. For a given feed 
tailings flow rate, the pressure gradient measured at the DP cell 2.4 m downstream of the 
mixing point (DP01) varied significantly with polymer dosage in the flocculated mixture. 
It was found that the peak (maximum) pressure gradient measurement at DP01 occurred 
at the optimum polymer dosage, with this optimum assigned based on the combination of 
conventional performance indicators, i.e. CST, mean floc size, final CWR. 

Based on the positive correlation found here between the peak pressure gradient and 
the optimal dosage, further tests should be done at both the pilot and commercial scale to 
determine how robust this indicator (peak pressure gradient downstream of the injector) 
is in determining the optimal mixing and polymer dosage conditions. It is also 
recommended that the inline FBRM be relocated so that it is significantly closer to the 
mixing location. In the present pilot-scale flocculated tailings line, the FBRM is located 
near the end of the pipe, far from the mixing point; based on the variation of pressure 
gradient with axial position, the FBRM should provide a better indication of optimal 
conditions if it is a few meters from the mixing point, i.e. physically near DP01.  
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